Official Arduino Boards

In market you can find Arduino Boards mentioned below & also many types of cloned Arduino Boards. So we are with a list, that will let you know the choice of board you want/require.


**Click On the Photos to Know More About These Boards!**
Arduino Mega 2560
Arduino Mega 2560


Arduino Uno
Arduino Uno
Arduino Fio
Arduino Fio
Arduino Deumilanove
Arduino Deumilanove
Arduino Lilypad
Arduino Lilypad
Arduino Diecimila
Arduino Diecimila
Arduino Mini
Arduino Mini
Arduino Nano
Arduino Nano
Arduino BT(BlueTooth)
Arduino BT(BlueTooth)
Arduino Micro Board
Arduino Micro
Arduino Leonardo Board
Arduino Leonardo
Arduino Esplora Board
Arduino Esplora
arduino due
Arduino DUE
GOOD NEWS: In coming months, Arduino will launch another board, we will let you know, so stay tuned!

Arduino Diecimila

Arduino Diecimila
Arduino Diecimila

Overview

The Arduino Diecimila is a microcontroller board based on the ATmega168 (datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started.
"Diecimila" means 10,000 in Italian and was named thusly to mark the fact that over 10,000 Arduino boards have been made. The Diecimila is the latest in a series of USB Arduino boards.

Schematic & Reference Design

Note that R2 is not mounted and that R3 has been replaced by a 100 nano-farad capacitor.

Arduino Diecimila Parts, With Headings
Arduino Diecimila Parts, With Headings

Power

The Arduino Diecimila can be powered via the USB connection or with an external power supply. The power source is selected by the PWR_SEL jumper: to power the board from the USB connection, place it on the two pins closest to the USB connector, for an external power supply, the two pins closest to the external power jack.
External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector. A low dropout regulator provides improved energy efficiency.
The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.
The power pins are as follows:
  • VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
  • 5V. The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
  • 3V3. A 3.3 volt supply generated by the on-board FTDI chip. Maximum current draw is 50 mA.
  • GND. Ground pins.

Memory

The ATmega168 has 16 KB of flash memory for storing code (of which 2 KB is used for the bootloader). It has 1 KB of SRAM and 512 bytes of EEPROM (which can be read and written with the EEPROM library).

Input and Output

Each of the 14 digital pins on the Diecimila can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:
  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.
  • External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.
The Diecimila has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and some low-level code. Additionally, some pins have specialized functionality:
  • I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website).
There are a couple of other pins on the board:
  • AREF. Reference voltage for the analog inputs. Used with analogReference().
  • Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

Communication

The Arduino Diecimila has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega168 provides UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1).
A SoftwareSerial library allows for serial communication on any of the Diecimila's digital pins.
The ATmega168 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus; see the documentation on the Wiring website for details. To use the SPI communication, please see the ATmega168 datasheet.

Programming

The Arduino Diecimila can be programmed with the Arduino software (download).
The ATmega168 on the Arduino Diecimila comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol (reference, C header files).
You can also bypass the bootloader and program the ATmega168 through the ICSP (In-Circuit Serial Programming) header.

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Diecimila is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega168 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. Version 0009 of the Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.
This setup has other implications. When the Diecimila is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Diecimila. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

USB Overcurrent Protection

The Arduino Diecimila has a resettable polyfuse that protects your computer's USB ports from shorts and overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed.

Physical Characteristics

The maximum length and width of the Diecimila PCB are 2.7 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

Summary

MicrocontrollerATmega168
Operating Voltage5V
Input Voltage (recommended)7-12 V
Input Voltage (limits)6-20 V
Digital I/O Pins14 (of which 6 provide PWM output)
Analog Input Pins6
DC Current per I/O Pin40 mA
DC Current for 3.3V Pin50 mA
Flash Memory16 KB (of which 2 KB used by bootloader)
SRAM1 KB
EEPROM512 bytes
Clock Speed16 MHz
Major Info. Source:- arduino.cc

Click Here to view information about all other official Arduino boards available in the market.


Arduino LilyPad - An Arduino Which You Can Wear

Arduino Lilypad- Wearable Arduino
Arduino Lilypad- Wearable Arduino

Overview

Arduino LilyPad  is a MCU board designed for cloths that you wear and e-textiles products. It could  be stitched to fabric & similarly can be mounted on to power supply, sensors with a conductive thread. The board is based on the ATmega168V (its actually a low-power version of the ATmega168) (datasheet) or the ATmega328V (datasheet). The Arduino LilyPad was designed and developed by Leah Buechley and SparkFun Electronics.

Downloads (Courtesy Arduino.cc)

Schematic: LilyPad_schematic_v18.pdf
EAGLE (CAD) Files: LilyPad_Board_v18.zip

Arduino Lilypad in Action-Stiched On The Fabric
Arduino Lilypad in Action- Stiched On The Fabric
 

Summary

Warning: Don't power the Arduino LilyPad with more than 5.5 volts, or plug the power in backwards: you'll probably kill it.
MicrocontrollerATmega168V or ATmega328V
Operating Voltage2.7-5.5 V
Input Voltage2.7-5.5 V
Digital I/O Pins14 (of which 6 provide PWM output)
Analog Input Pins6
DC Current per I/O Pin40 mA
Flash Memory16 KB (of which 2 KB used by bootloader)
SRAM1 KB
EEPROM512 bytes
Clock Speed8 MHz

Programming

The Arduino LilyPad can be programmed with the Arduino software IDE (download).
*Note*, the LilyPad Arduino should only be programmed with software versions 0010 or higher. You can program it with earlier versions, but all of the time related functions will be off (twice as slow as they should be).
The ATmega168V or ATmega328V on the Arduino LilyPad comes preburned with a bootloader that allows you to upload new code to it with the Arduino software. You can also bypass the bootloader and program the ATmega through the ICSP (In-Circuit Serial Programming) header.

Power

The LilyPad Arduino can be powered via the USB connection or with an external power supply.
If an external power supply is used, it should provide between 2.7 and 5.5 volts. This can come either from an AC-to-DC adapter or a battery.

Physical Characteristics

The LilyPad Arduino is a circle, approximately 50mm (2") in diameter. The board itself is .8mm (1/32") thick (approximately 3mm (1/8") where electronics are attached).

Washability(Even That Is Possible With This!)

Wash at your own risk - we do ;). We recommend washing projects by hand with a mild detergent. Drip dry. Make sure you remove your power supply first!

More Information

SparkFun Electronics has a range of accessories for use with the LilyPad Arduino.

Information source :  arduino.cc